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Abltract-Forced vibrations of a thermoviscoelastic material give rise to nonlinear coupling between
thermal and mechanical responses. In particular, the response of a rod of solid rocket propeUant to axial
vibrations includes several narrow frequency I'8JlI«:S characterized by rapid or even discontinuous increases
in thermomechanical response. In this paper, the sensitivity of these critical frequency ranges to boundary
condition modeling and to smaU changes in constitutive properties and ambient conditions is studied. It is
found that the solution is somewhat sensitive to the temperature dependence in the thermoviscoelastic
material law• but far more sensitive to the type of thermal boundary conditions imposed upon the problem.

INTRODUCTION

The thermomechanically coupled response of a viscoelastic rod subjected to an axially imposed
vibration was studied by Huang and Lee[l]. Mukherjee[2] investigated the post-transience
response and showed that there exist several critical driving frequencies. Stress and tem­
perature levels in response to driving frequencies just higher than critical were found to be
much higher than those calculated for a slightly lower, subcritical frequency. Mukherjee's
analysis was based upon a stress boundary condition at the driven end of the rod. It was later
shown [3] that specification of a displacement boundary condition at the driven end does not
lead to a one-to-one correspondence with the specified-stress problem, although the same
"critical-frequency" phenomenon is observed.

This paper addresses itself to the sensitivity of the calculated response to various
parameters in the problem. The most important manifestation of a change in the ther­
momechanical response of the rod is the shifting of the critical frequency. The sensitivity of the
critical frequencies is studied with respect to:
1. The thermal boundary conditions at the driven end.
2. Small changes in the ambient temperature.
3. Small changes in various parameters in the constitutive equation for the particular solid
propellant being studied.

STATEMENTOFTHEPROBLEM

The coupled, second-order, non-linear ordinary differential equations governing the one­
dimensional thermomechanical response of a rod of thermoviscoelastic material are:

(1)

(2)

where

u=l{"I}
L "2

L = length of the rod
"It "2 = components of dilil'lacement in- and out-of-phase with the driving displacement

'T = (T - T1)/(To- T1)
T = absolute temperature of the material
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To = ambient temperature
, = d/dq, q = normalized position coordinate along the rod (q =0 at free end. q = I at

driven end)
a4=pL2w 2+IJ(To- TIF
a5 = ~lC2pw3L4/[2cIZ+ CZ1K(To- TI»)
p =density of the rod
K = thermal conductivity of the rod
w = the driving frequency

and the complex Young's modulus of the rod is given by

where

(3a)

(3b)

and

(~;) = (1::~) x 10-11 (psir
l
(secrlJ{"FP

f3 = -0.214

"y = 3.21

T. = - 125°F.

Equations (I) and (2) are derived in Young[3]. They are solved by iteration and finite
differences.

BOUNDARY CONDITIONS

The boundary conditions applied to this problem in[3] are:

U'(O) = 0

K
1'(0) = 1+HL 1"(0)

where H = surface conductance, and

UO) = i{~}

where Ud = amplitude of driving displacement, and

1'(1) = I.

(4)

(5)

(6)

(7)

Equation (7) is predicated upon the assumption that the mechanism which forces the
vibration of the rod acts as a perfect heat sink and that it remains at the ambient temperature.
If, however, it is allowed to warm up along with the rod, a different boundary condition
becomes appropriate.

The thermal conductivity of most metals ot ceramics is much higher than that for the rod
itself. Thus, even for a severe temperature gradient within the rod at the driven end, thermal
equilibrium can be maintained with a very slight thermal gradient within the drivinB mechanism.
Treating the temperature within the mechanism as beinB uniform and equal to that at the driven
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end of the rod, a surface conductance boundary condition can be applied. Therefore, eqn (7) is
replaced with

/C
T(l) = 1- HL T'(l). (8)

The term /cT'(l) comes from the heat applied to the driver and is evaluated for the rod at its
driven end. Neglecting the small drop in temperature across the driver, Newton's law of cooling
is applied using the end temperature of the rod itself. A value of /CIHL = 1, as given in[2j, is
used in both thermal boundary conditions, eqns (5) and (8).

The effect of this modification is to reduce the heat flow through the driven end and to
significantly raise the temperature profile along the rod. A comparison of results using the two
boundary conditions is given in Fig. 1.

In addition to raising the overall steady-state temperature, the modified boundary condition
also leads to a marked lowering of the critical frequencies. This phenomenon and its im­
plications are shown in Fig. 2, where the maximum temperature maintained within the rod is

1.3

1.2

S"foce conc1Jc1ance boIrldary cordliori

1.1

1.00.80.60.40.2
I.O-t------.---,------.---,------,,----,---,---....,.....--..----.4

0.0

Fig. I. Dimensionless temperature profiles for ~ '" 04000 rad/sec.

a- Conductance boundary condition
b- Fixed temperature batMllry condition

2.2

1.8

1.4

r:-
~, ,
I ,
I ,, ', ,, ,
I '
I I

I :
I ,

~)
,(~
: :
I ,

: i

I.O'+-=::;;;;;;;.,=---,-----,---,------,,----r---.----,
1000 3000 !5000 7000 9000

W,RAOJS

F/8.2. T... VS III for two thermal boundary conditions.



516 RICHARD W. YOUNG

plotted as a function of driving frequency. The three critical frequencies found for the
fixed-temperature boundary condition are reduced by approximately 400 rad/sec, 800 rad/sec
and 1300 rad/sec respectively. Additionally, a· fourth region of rapidly increasing response is
predicted at frequencies close to the previous third discontinuity. The most dramatic effect
upon the' predicted response occurs for those frequencies which were passed over as the critical
frequencies shifted to lower values. The increased temperature associated with the greater
impedance to heat flow (as shown in Fig. I for w = 4000 rad/sec) is quite small compared to the
increase associated with being shifted to the other side of a critical frequency. Compare
w =4000 and w =5500 in Fig. 2. Furthermore, these shifts are sufficiently large to affect nearly 30%
of the frequency band studied.

EFFECT OF AMBIENT TEMPERATURE

The pronounced non-linearities in the problem have been seen to result in a non-cor­
respondence between stable responses to known-stress and known-displacement boundary
conditions [2, 3] Hnd to exacerbate the differences resulting from various postulated thermal
boundary conditions at the driven end.

This logically calls into question the sensitivities of the response to other parameters, such
as the ambient temperature. To test for the presence of any large shifts in the critical
frequencies, the eqns (I) and (2) were solved for To = 60°F and 70°F and the results were
compared with the initial data for 65°F. The comparison is shown in Fig. 3. The dimensionless
variable T is based on To = 65° for all three cases. The response temperature is seen to have
been shifted up or down directly with To only for w < 2500 rad/sec. At this point, the
nonlinearities of the problem take over and the simple pattern is lost. In fact, over a wide range
(3500 < w < 5500 rad/sec) the response for To = 60° is warmer than that for either 65° or 700. At
higher frequencies the three responses are virtually indistinguishable. Most importantly, there is
very little shifting of the critical frequencies. However, some slight shifting is apparent
(&u :ES 100 rad/sec) and, given the highly nonlinear nature of the responses seen so far, it would
be inappropriate to suggest that shifting could not be more pronounced in a different tem­
perature range.

SENSITIVITY TO MATERIAL PARAMETERS

As a final check on the sensitivity of the response of the rod to slight variations in the
modeling of the problem, the roles of two of the important material parameters, {3 and 'Y, in eqn
(3a) were tested. Solutions were generated for deviations of approximately 1% in the exponents
{3 and 'Y.
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It is found that 'Y, the exponent of temperature, has a much more pronounced effect than
does the ambient temperature. A 1% increase in 'Y, from 3.21 to 3.24, lowers the critical
frequencies by 200-300 rad/sec and lowers the overall response temperature between critical
frequencies to a much greater degree than does a sop shift in ambient temperature. The
comparison of solutions for 'Y = 3.18,3.21 and 3.24 is shown in Pig. 4.

A similar analysis was performed with variations in fJ, the frequency exponent in the
material law. Solutions for fJ = -0.212, -0.214 and -0.216 were calculated and the results,
when plotted to the same scale used in Figs. 2-4, show almost undetectable changes. Critical
frequencies change by less than 40 rad/sec and dimensionless maximum temperatures by less
than 0.02. The trend as fJ increases in absolute value is to slightly raise the critical frequencies
as well as the overall temperature.

CONCLUSIONS

While some sensitivity of the solutions to material constants, especially the temperature
exponent, is found, it is seen that the overriding concern must be the appropriateness of the
boundary conditions, both mechanical and thermal. Mukherjee[2], Young[3] and this paper
provide comparisons between two different mechanical boundary conditions and two different
thermal boundary conditions and serve to illustrate the importance of properly treating this
early step in the solution of nonlinear thermomechanical coupling problems.
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